1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
10

Hey ill give brainlist

Mathematics
2 answers:
TEA [102]3 years ago
5 0

Answer:

2.\:\frac{41}{9}

Step-by-step explanation:

Recall that \frac{x}{9}=\lfloor \frac{x}{9} \rfloor + 0.\overline{[x\:\mod9]}.

Therefore, 4.\bar{5}=\frac{4\cdot 9 + 5}{9}=\fbox{$2)\:\frac{41}{9}$}.

Gelneren [198K]3 years ago
5 0

Answer:

B is correct answer.................

You might be interested in
Which equation represents a proportional situation?
ad-work [718]
The answer is a and the it do not have y intercept
3 0
3 years ago
A video streaming company charges a yearly membership fee of $119. Some movies and episodes not included in the annual subscript
astra-53 [7]

answer

the equation is $119 ÷ $2.99

6 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
4 years ago
What times what equals 41
scoundrel [369]
10.25 x 4
20.5 x 2
41 x 1

Hope this helps :)
4 0
4 years ago
Solve for x<br> X + 2w = m
Tems11 [23]

Answer:

X = m - 2w

Step-by-step explanation:

just isolate the variable.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which number is its own opposite
    9·1 answer
  • 6 x 20 = 6 x ___ tens= ___tens = ____
    5·1 answer
  • What is the equation of the line that passes through the point (-4, -6) and has a<br> slope of -1/2?
    11·1 answer
  • A camera has a listed price of $888.99 before tax. If the sales tax rate is 7.75% , find the total cost of the camera with sales
    10·2 answers
  • When calculating simple interest, what must you do if you want to invest for months instead of years?
    5·2 answers
  • Need help ASAP.
    11·1 answer
  • Add and write the fraction or mixed number in it's simplest form​
    11·1 answer
  • Can somebody help me with this question
    6·1 answer
  • Mr. Drew wants to build a square sandbox with an area of 144 square feet. What is the total length
    6·1 answer
  • A box of donuts containing 6 maple bars, 3 chocolate donuts, and 3 custard filled donuts is sitting on a counter in a work offic
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!