Answer:
B. 14.4 N
Rotational speed (Angular Velocity) = 2
The Radius of the circle = 1.2 m
Velocity = Angular velocity × radius = 2×1.2 = 2.4 m/s
Centripetal force= mv²/r = 3 × 2.4×2.4/1.2 = 3 × 2.4 × 2
= 14.4 N
I truly believe so, that’s a definite yes
It depends, You have to have the length and the width of the crest wave.
A 15.75-g<span> piece of iron absorbs 1086.75 </span>joules<span> of </span>heat<span> energy, and its ... </span>How many joules<span> of </span>heat<span> are </span>needed<span> to raise the temperature of 10.0 </span>g<span> of </span>aluminum<span> from 22°C to 55°C, if the specific </span>heat<span> of </span>aluminum<span> is o.90 J/</span>g<span>”C2 .</span>
Answer:
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Applying the impulse-momentum equation;
Impulse = change in momentum
Ft = m∆v
F = (m∆v)/t
Where;
F = force
t = time
m = mass
∆v = v2 - v1 = change in velocity
Given;
m = 0.80 kg
t = 0.050 s
The ball strikes the wall horizontally with a speed of 25 m/s, and it bounces back with this same speed.
v2 = 25 m/s
v1 = -25 m/s
∆v = v2 - v1 = 25 - (-25) m/s = 25 +25 = 50 m/s
Substituting the values;
F = (m∆v)/t
F = (0.80×50)/0.05
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N