One that can help you is:
ΔT=<span>T<span>Final</span></span>−<span>T<span>Initia<span>l
That is of course adding both tmepratures. There is one more that is a lil bit more complex
</span></span></span><span><span>Tf</span>=<span>Ti</span>−Δ<span>H<span>rxn</span></span>∗<span>n<span>rxn</span></span>/(<span>C<span>p,water</span></span>∗<span>m<span>water</span></span>)
This one is taking into account that yu can find temperature and that there could be a change with a chemical reaction. Hope this helps</span>
Explanation:
In my view, when the Object A is attracted to a Charged object B. Object B should be Negatively or Positively charged. So Object B should be the Opposite charged according to the Object B
Example =
If Object B is Negatively Charged, the Object A should be Positively Charged
If the Object B is Positively Charged, the Object A should be Negatively Charged
Sometimes it can Mix as a Neutral as well
Hope this Helps
Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!
Alpacas were used for their meat, fibers for clothing, and art, and their images in the form of conopas.