Answer:
(a). The speed of electron is
.
(b). The radius of electron is 
Explanation:
Given that,
Length = 2.5 cm
Distance = 6.0 mm
Magnetic field = 2.1 T
Potential difference = 700 V
(a). We need to calculate the electron's speed
Using formula of speed

Put the value into the formula



(b). We need to calculate the radius of electron
Using formula of centripetal force


Where,
m = mass of electron
v = speed of electron
r = radius
q = charge of electron
B = magnetic field
Put the value into the formula



Hence, (a). The speed of electron is
.
(b). The radius of electron is 4.2 cm
Answer:
Explained in Depth.
Explanation:
It is all matter of what kind of stars are we talking about, for simplicity let's say we are talking about normal stars such as our sun.
If there is a molecular cloud that has a mass that is slightly larger than our sun then it is possible that the gravity will eventually pull together cloud into a sphere that would have enough mass to start nuclear fusion which is important to become a star.
Mass of such cloud would be 1.98x10^30Kg almost equal to the sun's mass.
All of this implies that stars are formed when there is enough mass to let gravity pull it all together into a sphere that has enough gravitational pull to start nuclear fusion inside the core.
Answer:
False, it is chemical change
Explanation:
sorry it this is wrong
Answer:
a = (v₃₂ - v₂₁) / (t₃₂ -t₂₁)
Explanation:
This is an exercise of average speed, which is defined with the variation of the distance in the unit of time
v = (y₃ - y₂) / (t₃-t₂)
the midpoint of a magnitude is the sum of the magnitude between 2
t_mid = (t₂ + t₃) / 2
the same reasoning is used for the mean acceleration
a = (v_f - v₀) / (t_f - t₀)
in our case
a = (v₃₂ - v₂₁) / (t₃₂ -t₂₁)