Conditional probablility P(A/B) = P(A and B) / P(B). Here, A is sum of two dice being greater than or equal to 9 and B is at least one of the dice showing 6. Number of ways two dice faces can sum up to 9 = (3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6) = 10 ways. Number of ways that at least one of the dice must show 6 = (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (6, 5), (6, 4), (6, 3), (6, 2), (6, 1) = 11 ways. Number of ways of rolling a number greater than or equal to 9 and at least one of the dice showing 6 = (3, 6), (4, 6), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6) = 7 ways. Probability of rolling a number greater than or equal to 9 given that at least one of the dice must show a 6 = 7 / 11
Answer:
Factoring the expression
completely we get 
Step-by-step explanation:
We need to factor the expression
completely
We need to find common terms in the expression.
Looking at the expression, we get
is common in both terms, so we can write:

So, taking out the common expression we get: 
Now, we can factor the term (1+x^3) or we can write (x^3+1) by using formula:

So, we get:

Therefor factoring the expression
completely we get 