1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
13

Please help!! Giving BRAINLIEST!

Mathematics
1 answer:
garri49 [273]3 years ago
3 0
Answer: D
Explanation: rad 36 is the same as rad 6^2 and they are perfect roots do then you just add the numbers like usual.
You might be interested in
Please help!! Will mark Brainiest
mixas84 [53]

Answer:

B.

Step-by-step explanation:

If you rearrange the equation in b, you get

y=5(x-3)+15

This means that your f(1) is equal to f(3), or 15, and for each additional month, it increases by 5, which is what the table shows.

4 0
3 years ago
Sam runs for 10 minutes The graph shows his puse, in beats per minute. 100- (beats per min) 80- 1 2 3 5 6 7 8 9 10 Time (min) By
Inessa05 [86]

The rate at which his pulse is increasing after 3 minutes is 9.5 beats per minute

<h3>How to determine the beat rate after 3 minutes?</h3>

The given graph shows the curve and the tangent.

From tangent line, we have the following points:

(x,y) = (3,119) and (1,100)

The beat rate (m) at this point is:

m = \frac{y_2 -y_1}{x_2 -x_1}

So, we have:

m = \frac{100 - 119}{1 - 3}

Evaluate the differences

m = \frac{-19}{-2}

Evaluate the quotient

m = 9.5

Hence, the rate at which Sam's pulse is increasing after 3 minutes is 9.5 beats per minute

Read more about rates of tangent lines at:

brainly.com/question/6617153

#SPJ1

5 0
2 years ago
Fill in the blanks. <br><br> sedrftgyuhihkgfndt7y
kvv77 [185]

HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

5 0
3 years ago
Read 2 more answers
I need some help with this one
k0ka [10]
I believe the answer is 3
8 0
3 years ago
Simplify the rational expression. State any restrictions on the variable.
natulia [17]

Answer:

t+4, t≠8

Step-by-step explanation:

\dfrac{t^2-4t-32}{t-8}=\dfrac{(t+4)(t-8)}{(t-8)}=t+4

The value of t must not be one that makes the denominator zero, hence must not be 8.

8 0
4 years ago
Other questions:
  • The Statue of Liberty weighs about 2.04 x 105105 kg. The Washington Monument weighs about 9.07 x 107107 kg. About how many more
    5·1 answer
  • Help me asap Please!!!
    10·1 answer
  • What is 6.257 x 10^-7
    6·1 answer
  • .Solve for x 5 x − 1 = 6 x − 9
    15·2 answers
  • If g(x) = (24 – x)2 + 7, what is<br> the value of g(6)?<br> O 250<br> O-2<br> O 243<br> O 331
    11·1 answer
  • How many kilometers are in 60 miles? Note: There are 1.609kms in 1mi.
    12·2 answers
  • PLS HELP I REALLY NEED HELP FAST
    13·1 answer
  • PLEASE HLEP WITH QUESTION ONE PLS
    15·1 answer
  • Please help me with this because I am completely lost on this
    14·1 answer
  • Drivers pay a toll to pass over a busy bridge, and there are many toll booths that collect money. The city manager counted the t
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!