The metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
<h3>What is the amount of heat added to each metal?</h3>
The amount of heat Q = mcΔT where
- m = mass of metal
- c = specific heat capacity of mateal and
- ΔT = temperature change
<h3>Temperature change of the metal</h3>
Making ΔT subject of the formula, we have
ΔT = Q/mc
Given that Q and m are the same for each metal,
ΔT ∝ 1/c
We see that the temperature change is inversely proportional to the specific heat capacity.
Since the metals are at the same temperature, the metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
So, the metal which will reach the highest temperature is the metal with the lowest specific heat capacity.
Learn more about temperature here:
brainly.com/question/16559442
#SPJ12
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Answer:
In chemical bonding: Arrangement of the elements. The horizontal rows of the periodic table are called periods. Each period corresponds to the successive occupation of the orbitals in a valence shell of the atom, with the long periods corresponding to the occupation of the orbitals of a d subshell.
Explanation:
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf
5 Na molecules and 5 Cl molecules