<h3>
Short Answer: Yes, the horizontal shift is represented by the vertical asymptote</h3>
A bit of further explanation:
The parent function is y = 1/x which is a hyperbola that has a vertical asymptote overlapping the y axis perfectly. Its vertical asymptote is x = 0 as we cannot divide by zero. If x = 0 then 1/0 is undefined.
Shifting the function h units to the right (h is some positive number), then we end up with 1/(x-h) and we see that x = h leads to the denominator being zero. So the vertical asymptote is x = h
For example, if we shifted the parent function 2 units to the right then we have 1/x turn into 1/(x-2). The vertical asymptote goes from x = 0 to x = 2. This shows how the vertical asymptote is very closely related to the horizontal shifting.
So to rewrite it so that we can find the side, we just need to isolate the a variable.

So firstly, divide by 6 on both sides of the equation: 
Next, square root each side, and your answer should be 
Answer:
Step-by-step explanation:
x = 0.8 + 0.2y
Answer:
False, True, True are thr answers