The coordinates give are
(0,6)
(4,9)
(3,6)
(2,3)
These points can be substituted into the systems of equation in the choices and inspect which equations satisfy the value of the points. Doing this, the answer is
3x - 4y = -24
3x - y = 3
Good for Keira. Is there a question that goes along with this?
Answer:
(10x - 5) square units.
Step-by-step explanation:
Let the lengths of equal sides be x units.
Hence, AB + AD + DC = x + x + x = 3x
Therefore, BC = 3x - 2
![Area \: of \: trapezoid \\ = \frac{1}{2} (AD + BC) \times 5 \\ = \frac{1}{2} (x + 3x - 2) \times 5 \\ = \frac{1}{2} (4x - 2) \times 5 \\ = \frac{1}{2} \times 2 (2x - 1) \times 5 \\ = (2x - 1) \times 5 \\ = (10x - 5) \: {units}^{2}](https://tex.z-dn.net/?f=Area%20%20%5C%3A%20of%20%5C%3A%20%20trapezoid%20%20%5C%5C%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%28AD%20%2B%20BC%29%20%20%5Ctimes%205%20%5C%5C%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%28x%20%2B%203x%20-%202%29%20%20%5Ctimes%205%20%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%284x%20-%202%29%20%20%5Ctimes%205%20%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%202%20%282x%20-%201%29%20%20%5Ctimes%205%20%20%5C%5C%20%20%3D%20%282x%20-%201%29%20%5Ctimes%205%20%5C%5C%20%20%3D%20%2810x%20-%205%29%20%5C%3A%20%20%7Bunits%7D%5E%7B2%7D%20)
Answer: The Answers are A, and C.