Answer:
Length:8 m
Width:3 m
Step-by-step explanation:
<u><em>The complete question is</em></u>
If the perimeter of a rectangle is 22 meters, and the perimeter of a right triangle is 12 meters (the sides of the triangle are half the length of the rectangle, the width of the rectangle, and the hypotenuse is 5 meters). How do you solve for L and W, the dimensions of the rectangle.
step 1
<em>Perimeter of rectangle</em>
we know that
The perimeter of rectangle is equal to

we have

so

Simplify
-----> equation A
step 2
Perimeter of triangle
The perimeter of triangle is equal to


so

Multiply by 2 both sides

----> equation B
Solve the system of equations by graphing
Remember that the solution is the intersection point both graphs
using a graphing tool
The solution is the point (8,3)
see the attached figure
therefore
The dimensions of the rectangle are
Length:8 m
Width:3 m
You will need 7 because 150 divided by 20 is 7
<span>2(4x - 12) + 3x = 6x + 1
Distribute.
8x - 24 + 3x = 6x + 1
Combine like terms.
11x - 24 = 6x + 1
5x = 25
x = 5
</span>