A.Fractions and decimals are not integers<span>. All whole </span>numbers<span> are</span>integers<span> (and all natural </span>numbers<span> are </span>integers<span>), but not all </span>integers<span>are whole </span>numbers<span> or natural </span>numbers<span>. For example, -5 is an </span>integer<span>but not a whole </span>number<span> or a natural </span>number<span>.
B.</span><span>A </span>number<span> is </span>rational<span> if it can be represented as p q with p , q ∈ Z and q ≠ </span>0<span> . Any </span>number<span> which doesn't fulfill the above conditions is irrational. It can be represented as a ratio of two integers as well as ratio of itself and an irrational </span>number<span> such that </span>zero<span> is not dividend in any case
</span>C.<span>In mathematics, an </span>irrational number<span> is any </span>real number<span> that cannot be expressed as a ratio of integers. </span>Irrational numbers<span> cannot be represented as terminating or repeating decimals.
</span>D.<span>The correct answer is </span>rational<span> and </span>real numbers<span>, because all </span>rational numbers<span> are also </span>real<span>. Correct. The </span>number<span> is between integers, so it can't be an integer or a whole </span>number<span>. It's written as a ratio of two integers, so it's a </span>rational number<span> and not irrational.
</span> Witch one do u think it is??
Well,
it says The quatient of x and seven is 5 more than three times x
The quotient = x/7
three times x = 3x
x/7 = 3x + 5 This is the answer
Answer:
this will probably help
Step-by-step explanation:
Answer:
0.2103 = 21.03% probability that, in any seven-day week, the computer will crash less than 3 times.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Mean of 0.6 times a day
7 day week, so 
What is the probability that, in any seven-day week, the computer will crash less than 3 times? Round your answer to four decimal places.

In which




So

0.2103 = 21.03% probability that, in any seven-day week, the computer will crash less than 3 times.