Answer: Choice A) 526 degrees, -194 degrees
==============================
Work Shown:
A coterminal angle points in the same exact direction as the original angle.
Because there are 360 degrees in a circle, this means we can add 360 to the original angle to get 166+360 = 526, which is one positive coterminal angle to 166 degrees.
Subtract 360 from the original angle and we'll get a negative coterminal angle
166 - 360 = -194
Answer:
x=16; y=24
Step-by-step explanation:
for (x,23), 23=0.5x+15
x=16
for (18xy), y=0.5*18+15=24
To solve for the longest side, the hypotenuse, you have to use the pythagorean theorem. It will be 10^2 + 9^2 = c^2. 100 + 81 =c^2.
c^2 = 181 so c = sqrt(181).
to find sin of A do opposite/hypotenuse which gives you 9/sqrt(181)
to find cos of A do adjacent/hypotenuse which gives you 10/sqrt(181)
25/100 = 1/4 (divide both numerator and denominator by 25)
350/1000 = 35/100 = 7/20.
Answer:
Horizontal shift of 4 units to the left.
Vertical translation of 8 units downward.
Step-by-step explanation:
Given the quadratic function, y = (x + 4)² - 8, which represents the horizontal and vertical translations of the parent graph, y = x²:
The vertex form of the quadratic function is y = a(x - h)² + k
Where:
The vertex is (h , k), which is either the <u>minimum</u> (upward facing graph) or <u>maximum</u> (downward-facing graph).
The axis of symmetry occurs at <em>x = h</em>.
<em>a</em> = determines whether the graph opens up or down, and makes the graph wider or narrower.
<em>h</em> = determines how far left or right the parent function is translated.
<em>k</em> = determines how far up or down the parent function is translated.
Going back to your quadratic function,
y = (x + 4)² - 8
- The vertex occrs at (-4, -8)
- a is assumed to have a value of 1.
- Given the value of <em>h</em> = -4, then it means that the graph shifted horizontally by <u>4 units to the left</u>.
- Since k = -8, then it implies that the graph translated vertically at <u>8 units downward</u>.
Please mark my answers as the Brainliest, if you find this helpful :)