Answer:
A translation maps point A(3,7)A(3,7)A, left parenthesis, 3, comma, 7, right parenthesis to point A'(6,-2)A
′
(6,−2)A, prime, left parenthesis, 6, comma, minus, 2, right parenthesis. Let's determine what translation this is.
Solution
Step 1: Horizontal shift. AAA is shifted 333 units to the right because (6)-(3)=\tealD{+3}(6)−(3)=+3left parenthesis, 6, right parenthesis, minus, left parenthesis, 3, right parenthesis, equals, start color #01a995, plus, 3, end color #01a995.
Step 2: Vertical shift. AAA is shifted 999 units down because (-2)-(7)=\maroonD{-9}(−2)−(7)=−9left parenthesis, minus, 2, right parenthesis, minus, left parenthesis, 7, right parenthesis, equals, start color #ca337c, minus, 9, end color #ca337c.
The answer: AAA is mapped onto A'A
′
A, prime under a translation by \langle \tealD{3},\maroonD{-9} \rangle⟨3,−9⟩open angle, start color #01a995, 3, end color #01a995, comma, start color #ca337c, minus, 9, end color #ca337c, close angle.
Step-by-step explanation: