Answer:
40.4 kJ
Explanation:
Step 1: Given data
- Heat of sublimation of CO₂ (ΔH°sub): 32.3 kJ/mol
Step 2: Calculate the moles corresponding to 55.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
n = 55.0 g × 1 mol/44.01 g = 1.25 mol
Step 3: Calculate the heat (Q) required to sublimate 1.25 moles of CO₂
We will use the following expression.
Q = n × ΔH°sub
Q = 1.25 mol × 32.3 kJ/mol = 40.4 kJ
Answer: Option (A) is the correct answer.
Explanation:
When energy is transferred from the air to the water then energy is absorbed by the water molecules.
This energy travels through one molecule of water to another molecule of water by the process of convection.
Thus, we can conclude that when energy is transferred from the air to the water, then it travels through the water.
Answer:
The answer to your question is 0.5 liters
Explanation:
Data
[CaCl₂] = 4.0 M
number of moles = 2
volume = ?
Process
To solve this problem use the formula of Molarity and solve it for volume, substitute the values and simplify.
-Formula
Molarity = moles / volume
-Solve for volume
Volume = moles / molarity
-Substitution
Volume = 2/4
-Simplification
Volume = 0.5 liters.
Volume ⇒ 50 mL in liters : 50 / 1000 = 0.05 L
Molarity of solution ⇒ 0.15 M
Number of moles:
n = M * V
n = 0.15 * 0.05
n = 0.0075 moles of CuCl2
hope this helps!.