PV = nRT
R = 0.0821 L * atm / mol * K
(ideal gas constant)
First, convert 735 torr to atm. Divide by 760.
(1 atm = 760 torr)
735 torr * 1 atm / 760 torr = 0.967 atm
Then, convert 37 C to Kelvin. Just add 273.
37 C = 310K
n = PV / RT
= (0.967)(2.07) / (0.0821)(310)
= 0.0786 mol
<span>0.0786 mol * 6.02 * 10^23 molecules / 1 mol = 4.73 * 10^22 molecules </span>
The distance from one crest to another crest or from one trough to another trough is called wavelength. Hope it helps
The HCl added = 1.25 moles
and the moles of Na2HPO4 = 1 mole
Now when acid is added in the given solution of Na2HPO4
One mole of H+ will react with one mole of Na2HPO4 to given one mole of NaH2PO4
Na2HPO4 + H+ ---> NaH2PO4
Now this one mole formed NaH2PO4 will further react with 0.25 moles of H+ left to form 0.25 moles of H3PO4 and 0.75 moles of NaH2PO4 will remain in the solution
So this will result into formation of a buffer of phosphoric acid and NaH2PO4
NaH2PO4 + H+ ---> H3PO4
pKa of H3PO4 = 2.1
so pH = pKa + log [salt] / [acid] = 2.1 + log [0.75 / 0.25] = 2.58
so the pH will be in between 2.1 to 7.2
The molarity is moles/liters.
First, convert 4,000 mL to L:
4000 mL --> 4 L
Now, you must convert the 17 g of solute to moles by dividing the number of grams by the molar mass. The molar mass of AgNO3 is <span>169.87 g/mol:
17 / 169.87 = .1
Now that you have both the number of moles and the liters, plug them into the initial equation of moles/liters:
.1/4 = .025</span>