1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
4 years ago
9

When 5 randomly selected people all have the same birth month of March.

Mathematics
1 answer:
Doss [256]4 years ago
3 0

Answer:

I know 4 people that are all really close friends and all have birthdays in march.

Step-by-step explanation:

You might be interested in
World Toy buys bicycles for $40 and sells them for $95. What is the percent mark-up in the price?
Arisa [49]

Answer:

57%

Step-by-step explanation:

4 0
4 years ago
Which expression is equivalent to the following complex fraction?
Katarina [22]

Answer:

The first option is correct, (-2y + 5x) / (3x - 2y)

Step-by-step explanation:

(\frac{-2}{x} + \frac{5}{y} ) \div (\frac{3}{y} - \frac{2}{x})\\= \frac{-2y + 5x}{xy} \div \frac{3x - 2y}{xy}\\= \frac{-2y + 5x}{xy} \times \frac{xy}{3x - 2y}\\= \frac{-2y + 5x}{3x - 2y}

6 0
3 years ago
Read 2 more answers
Explain all answers step by step or I will report u please help worth 10
insens350 [35]
$3.25-25% = $2.45
All u do is minus .25% From current b$ amount. And round up cents p
5 0
3 years ago
Megan received a $208,000 inheritance after taxes from her parents. She invested it at 8% interest compounded quarterly for 5 ye
Nookie1986 [14]
Use the compound interest formula.
  A = P*(1 +r/n)^(n*t)
where P is the principal, r is the annual rate, n is the number of compoundings per year, and t is the number of years.

For the first investment, ...
  A = 208,000*(1 +.08/4)^(4*5) = 309,077.06

For the second investment, ...
  A = 218,000*(1 +.07/2)^(2*4) = 287,064.37

Totaling both investments at maturity, Megan has $596,141.43.
3 0
4 years ago
Pls help i will give you a 5 star rating
docker41 [41]

                                           Question # 1

Given the expression

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3

Follow the PEMDAS order of operations

\mathrm{Calculate\:within\:parentheses}\:\left(5+3\cdot \:2\right)\::\quad 11

=6^2\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:6^2\::\quad 36

=36\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:2^3\::\quad 8

=36\div \:3+11-8

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:36\div \:3\::\quad 12

=12+11-8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:12+11-8\::\quad 15

=15

Therefore,

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3=15

                                            Question # 2

Given the expression

\frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}

as

4+3^2-\frac{15}{5}

=4+9-\frac{15}{5}      ∵3^2=9

\mathrm{Add\:the\:numbers:}\:4+9=13

=-\frac{15}{5}+13

and

\left(2^4-5\cdot \:3\right)^2

=\left(16-5\cdot \:3\right)^2   ∵ 2^4=16

\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15

=\left(16-15\right)^2

\mathrm{Subtract\:the\:numbers:}\:16-15=1

=1^2

\mathrm{Apply\:rule}\:1^a=1

=1

Thus the equation \frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}  becomes

=\frac{-\frac{15}{5}+13}{1}

\mathrm{Divide\:the\:numbers:}\:\frac{15}{5}=3

=\frac{-3+13}{1}

\mathrm{Apply\:rule}\:\frac{a}{1}=a

=-3+13

\mathrm{Add/Subtract\:the\:numbers:}\:-3+13=10

=10

Therefore,

\frac{4+3^2-\frac{15}{5}}{\left(2^4-5\cdot \:3\right)^2}=10

                                                       Question # 3

Given the expression

ab-c^2+2b

Putting a = 2, b = 4, and c = 1 in the expression

=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(1\right)^2\::\quad 1

=\left(2\right)\left(4\right)-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(4\right)\::\quad 8

=8-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(4\right)\::\quad 8

=8-1+8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:8-1+8\::\quad 15

=15

Therefore,

ab-c^2+2b=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)=15

                                                     Question # 4

Given the expression

4d^3+2e\div \:f+de

Putting d = 2, e = 3, and f = 6 in the expression

=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(2\right)^3\::\quad 8

=4\cdot \:8+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:4\cdot \:8\::\quad 32

=32+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(3\right)\div \:6\::\quad 1

=32+1+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(3\right)\::\quad 6

=32+1+6

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:32+1+6\::\quad 39

=39

Therefore,

4d^3+2e\div \:\:f+de=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)=39

7 0
4 years ago
Other questions:
  • Solve 14n+6p-8b=18p for n
    14·1 answer
  • What shape has 22mm,20mm,13mm and the angles are 62 degrees 72 degrees and 46 degrees
    14·1 answer
  • 7,10,8,11 I neeeed help
    14·1 answer
  • Shawn drew a rectangle that was 2 units wide and 6 units long. Draw a different rectangle that has the same perimeter area.
    8·1 answer
  • What's the answer ???
    14·1 answer
  • A car traveled 180 miles at a constant rate.
    12·1 answer
  • Li’s family has a coupon for $49 off a stay at any hotel. They do not want to spend more than $150 in all. An inequality represe
    13·3 answers
  • Pls answer this It will help me understand this question
    15·2 answers
  • 1. |2x+5|=11<br><br> 2. 3|x-4|+1=19<br><br> Please show all steps
    7·2 answers
  • Solve the system by substitution.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!