Answer:
<em><u>A.10000</u></em>
<em><u>B.25 more trees must be planted</u></em>
Step-by-step explanation:
⇒Given:
- The intial average yield per acre
= 150
- The initial number of trees per acre
= 100
- For each additional tree over 100, the average yield per tree decreases by 1 i.e , if the number trees become 101 , the avg yield becomes 149.
- Total yield = (number of trees per acre)
(average yield per acre)
<em>A.</em>
⇒If the total trees per acre is doubled , which means :
total number of trees per acre
=
= 200
the yield will decrease by :
- 

⇒total yield = 
<em>B.</em>
⇒to maximize the yield ,
let's take the number of trees per acre to be 100+y ;
and thus the average yield per acre = 150 - y;
total yield = 
this is a quadratic equation. this can be rewritten as ,
⇒ 
In this equation , the total yield becomes maximum when y=25;
<u><em>⇒Thus the total number of trees per acre = 100+25 =125;</em></u>
Answer:
Hello! answer: 49
Step-by-step explanation:
This is a complementary angle meaning it will add up to 90 degrees so...
90 - 41 = 49 therefore a = 49 hope that helps!
Answer:
Step-by-step explanation:
I think it is C
The correct question is
Which is the best approximation to a solution of the equation
e^(2x) = 2e^{x) + 3?
we have that
e^(2x) = 2e^{x) + 3-----------> e^(2x)- 2e^{x) - 3=0
the term
e^(2x)- 2e^{x)----------> (e^x)²-2e^(x)*(1)+1²-1²------> (e^x-1)²-1
then
e^(2x)- 2e^{x) - 3=0--------> (e^x-1)²-1-3=0------> (e^x-1)²=4
(e^x-1)=2--------> e^x=3
x*ln(e)=ln(3)---------> x=ln(3)
ln(3)=1.10
hence
x=1.10
the answer is x=1.10