Answer:
it may be electron, atom or ions depend on the nature of the substance and the character of reaction
like :- particles per mole, coulombs per electron
Answer:
4.99*10²³ molecules of N₂O₄ are in 76.3 g of N₂O₄
Explanation:
Avogadro's Number is the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension. Avogadro's number applies to any substance.
You know that the molar mass of N₂O₄ is 92.02 g/mol, and you have 76.3 g. Then you can apply the following rule of three: 92.02 grams are present in 1 mole of the compound, 76.3 grams in how many moles are they?

amount of moles= 0.83 moles
Then, you can apply another rule of three: if by definition of Avogadro's number 1 mole of the compound has 6.023*10²³ molecules, 0.83 moles of the compound, how many molecules will it have?

amount of molecules= 4.99*10²³
<u><em>4.99*10²³ molecules of N₂O₄ are in 76.3 g of N₂O₄</em></u>
Answer:
All living things, large or small, plant or animal, are made up of cells. Most living things are made up of one cell and they are called unicellular organisms. Many other living things are made up of a large number of cells that form a larger plant or animal. These living things are known as multicellular organisms.
Explanation:
Answer:
9.18g
Explanation:
Step 1: Write the reduction half-reaction
Au³⁺(aq) + 3 e⁻ ⇒ Au(s)
Step 2: Calculate the mass of gold is produced when 15.0A of current are passed through a gold solution for 15.0min
We will use the following relationships:
- 1 mole of electrons has a charge of 96486 C (Faraday's constant).
- 1 mole of Au is produced when 3 moles of electrons circulate.
- The molar mass of Au is 196.97 g/mol.
The mass of gold produced is:
