Answer:
7.5 minutes
Step-by-step explanation:
Given
See attachment for complete question
Let
![t \to time](https://tex.z-dn.net/?f=t%20%5Cto%20time)
![y \to capacity](https://tex.z-dn.net/?f=y%20%5Cto%20capacity)
From the question, we have the following points
--- When he first sees it
--- 3 minutes later
First, we calculate the rate (m)
![m = \frac{y_2 -y_1}{t_2 -t_1}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7By_2%20-y_1%7D%7Bt_2%20-t_1%7D)
![m = \frac{5 -7}{3 -0}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B5%20-7%7D%7B3%20-0%7D)
![m = -\frac{2}{3}](https://tex.z-dn.net/?f=m%20%3D%20-%5Cfrac%7B2%7D%7B3%7D)
The discharge rate is 2/3 gallons per minute
To calculate the additional minute, we simply consider the capacity of the tank at the later time. i.e. 5 gallons
To calculate time (t), we have:
![Rate * Time = Capacity](https://tex.z-dn.net/?f=Rate%20%2A%20Time%20%3D%20Capacity)
![\frac{2}{3} * t = 5](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D%20%2A%20t%20%3D%205)
Solve for t
![t = 5 *\frac{3}{2}](https://tex.z-dn.net/?f=t%20%3D%205%20%2A%5Cfrac%7B3%7D%7B2%7D)
![t = \frac{15}{2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B15%7D%7B2%7D)
![t = 7.5](https://tex.z-dn.net/?f=t%20%3D%207.5)