Answer:
An equilateral triangle has all three sides equal, and all three interior angles equal, too. In this case, each interior angle of an equilateral triangle is 60 degrees.
Step-by-step explanation:
Answer:
Step-by-step explanation:
![\huge \sqrt[5]{ {z}^{4} {z}^{ - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{4 - \frac{3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{8 - 3}{2} } } \\ \\ = \huge \sqrt[5]{ {z}^{ \frac{5}{2} } } \\ \\ = \huge {z}^{ \frac{5}{2} \times \frac{1}{5} } \\ \\ = \huge {z}^{ \frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%7D%20%7Bz%7D%5E%7B%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B4%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B8%20-%203%7D%7B2%7D%20%20%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Chuge%20%5Csqrt%5B5%5D%7B%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B5%7D%7B2%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Chuge%20%20%20%7Bz%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20)
X is 0,in most situations,but could you provide a picture next time?
For the function y = 7x - 1, if you state that the domain(or all the numbers you can substitute in for "x") of that function is the set of all real numbers, then you can assume that there will be an infinite number of solutions for the function.
In other words, if you substitute any real number in for "x" you will find that you will get a corresponding value for "y". In fact, these "pairs" of corresponding values of x and y are called ordered pairs and represent the various solutions of the equation.
Your response should be choice D:
<span>The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
</span>
<span>Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
</span>
Translaitng <span>8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
</span><span>
</span><span>Answer: correct choice is B.
</span>