The distance the ships traveled are like the legs of a triangle and the question wants to know the hypotenuse. To find the hypotenuse, use the pythagorean theorem. this is a^2 + b^2 = c^2, with a and b being the legs and c being the <span>hypotenuse.
</span>Plug in known values:
84^2 + 62^2 = c^2
Solve:
84^2 = 7056
62^2 = 3844
7056 + 3844 = c^2
7056 + 3844 = 10900
10900 = c^2
Now you just need to isolate c by finding the square root of both sides.
√10900 = 104.403
√c^2 = c
So c = 104.403, or just 104.40 when rounded to the nearest tenth.
And if c is 104.40, then that means the hypotenuse is 104.40.
And all of that basically means that the distance between the ships is 104.40 miles.
Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Once the numbers have the same base and exponents, we can add or subtract their coefficients.Here are the steps to adding or subtracting numbers in scientific notation:Determine the number by which to increase the smaller exponent by so it is to the equal larger exponent
A = L x W = 8 x 17 = 136
answer
C. 136 sq. units
Answer:
<h3>
x = 6 ft. long shadow</h3><h3>
</h3>
Step-by-step explanation:
its a ratio and proportion:
<u> 15 ft. tall giraffe </u> = <u> 5 ft. tall bird </u>
18 ft. shadow x shadow
15 (x) = 18 (5)
x = 90 / 15
x = 6 ft. long shadow