Find a common denominator first
2 24/40 - 1 15/40 = 1 9/40
it is already in simplest form so you can not reduce it

Distribute 3 throught the parentheses

Move the variable to the left-hand side and change its sign

Move the constant to the right-hand side and change its sign

Collect like terms

Divide both sides of the equation by -3

Answer:
z = x^3 +1
Step-by-step explanation:
Noting the squared term, it makes sense to substitute for that term:
z = x^3 +1
gives ...
16z^2 -22z -3 = 0 . . . . the quadratic you want
_____
<em>Solutions derived from that substitution</em>
Factoring gives ...
16z^2 -24z +2z -3 = 0
8z(2z -3) +1(2z -3) = 0
(8z +1)(2z -3) = 0
z = -1/8 or 3/2
Then we can find x:
x^3 +1 = -1/8
x^3 = -9/8 . . . . . subtract 1
x = (-1/2)∛9 . . . . . one of the real solutions
__
x^3 +1 = 3/2
x^3 = 1/2 = 4/8 . . . . . . subtract 1
x = (1/2)∛4 . . . . . . the other real solution
The complex solutions will be the two complex cube roots of -9/8 and the two complex cube roots of 1/2.
Answer:
Step-by-step explanation:
C