Answer:
1. y' = 3x² / 4y²
2. y'' = 3x/8y⁵[(4y³ – 3x³)]
Step-by-step explanation:
From the question given above, the following data were obtained:
3x³ – 4y³ = 4
y' =?
y'' =?
1. Determination of y'
To obtain y', we simply defferentiate the expression ones. This can be obtained as follow:
3x³ – 4y³ = 4
Differentiate
9x² – 12y²dy/dx = 0
Rearrange
12y²dy/dx = 9x²
Divide both side by 12y²
dy/dx = 9x² / 12y²
dy/dx = 3x² / 4y²
y' = 3x² / 4y²
2. Determination of y''
To obtain y'', we simply defferentiate above expression i.e y' = 3x² / 4y². This can be obtained as follow:
3x² / 4y²
Let:
u = 3x²
v = 4y²
Find u' and v'
u' = 6x
v' = 8ydy/dx
Applying quotient rule
y'' = [vu' – uv'] / v²
y'' = [4y²(6x) – 3x²(8ydy/dx)] / (4y²)²
y'' = [24xy² – 24x²ydy/dx] / 16y⁴
Recall:
dy/dx = 3x² / 4y²
y'' = [24xy² – 24x²y (3x² / 4y² )] / 16y⁴
y'' = [24xy² – 18x⁴/y] / 16y⁴
y'' = 1/16y⁴[24xy² – 18x⁴/y]
y'' = 1/16y⁴[(24xy³ – 18x⁴)/y]
y'' = 1/16y⁵[(24xy³ – 18x⁴)]
y'' = 6x/16y⁵[(4y³ – 3x³)]
y'' = 3x/8y⁵[(4y³ – 3x³)]
Answer:
No
Step-by-step explanation:
No because the 8x^3 is all one term since it is not separated by any signs.
Answer: (4-4i)+(3-2i) = 7-6i
Step-by-step explanation:
To add or subtract two complex numbers, just add or subtract the corresponding real and imaginary parts. For instance, the sum of 4 -4i and 3 - 2i is 7 -6i. The numbers in standard form will be a + bi, where a is the real part and bi is the imaginary part.
Can you restate the question please
Answer:
solution set is (x,y) = (7,6)
Step-by-step explanation:
solving by substitution method
2x +y=20--------------1
6x-5y=12---------------2
from equation 1, solve for y
2x+y=20
y= 20-2x------equation 3
adding value of y in equation 2
6x-5y=12
6x-5(20-2x)=12
6x-100+10x=12
16x= 12+100
16x= 112
x= 112/16
x=7
adding value of x in equation 3
y= 20-2x
y= 20- 2(7)
y=20-14
y=6
so solution set (x,y) = (7,6)