Answer:
No
Step-by-step explanation:
equation is y=2x+3
The point we have is (15,29)
i.e. x=15 and y=29
if we put x=15 in the equation we should get the value of y=29
y=2(15)+3
=30-3
=27
Here, we didn't get y=29 instead we got y=27
So the point (15,29) doesn't follow that equation
14x + 11y = 896
x = number of adults
y= number of kids
if nine adults went then 70 kids went
Answer:
The surface of the prism is 84m²
Step-by-step explanation:
You have 4 figures here (two the same triangles)
you need to determine the surface of each and then sum it to one. This will be your final surface.
rectangles:
3*6= 18m²
5*6 = 30m²
4*6 = 24m²
triangles:
You need to determine the square of the triangles from the Heron's formula.
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
,
where s is the semi-perimeter of the triangle; that is,
.
So the permimeter of the triangle is
2p=4+5+3 = 12m
p = 6m
![S = \sqrt{p*(p-a)*(p-b)*(p-c)} = \sqrt{6*(6-3)*(6-4)*(6-5)} = \sqrt{6*3*2*1} =\sqrt{36} =6[m^{2} ]](https://tex.z-dn.net/?f=S%20%3D%20%5Csqrt%7Bp%2A%28p-a%29%2A%28p-b%29%2A%28p-c%29%7D%20%20%3D%20%5Csqrt%7B6%2A%286-3%29%2A%286-4%29%2A%286-5%29%7D%20%20%3D%20%5Csqrt%7B6%2A3%2A2%2A1%7D%20%3D%5Csqrt%7B36%7D%20%3D6%5Bm%5E%7B2%7D%20%5D)
So the surface of the prism is a total sum of all surfaces:
P = 18m²+30m²+ 24m²+2*6m² = 84m²
I think it might be 30 but I don’t know
Answer:
Question 1:
a. The answer is B because the graph inclined really quickly and then it inclined at a much slower pace, suggesting that the person was running and then walking.
b. The answer is C because you can see on the graph that after a while, the distance from the starting point goes back to 0, indicating that the person forgot something at home.
Question 2:
a. The dashed line reaches the bottom at 15:30 so the answer is C.
b. Siobhan travels 8 km to go from home to school so the answer is 2 * 8 = 16 which is option D.
Question 3:
The answer is C because after the distance from the starting point increased, it then decreased and came back to the original point suggesting that he walked, turned around and walked back to the starting point.