5 multiples of 3 are 3, 6, 9, 12, and 15
Answer:
Step-by-step explanation:
i^{11}+i^{16}+i^{21}+i^{26}+i^{31}

Answer:
The prove is as given below
Step-by-step explanation:
Suppose there are only finitely many primes of the form 4k + 3, say {p1, . . . , pk}. Let P denote their product.
Suppose k is even. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
ThenP + 2 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 2 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠2. This is a contradiction.
Suppose k is odd. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
Then P + 4 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 4 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠4. This is a contradiction.
So this indicates that there are infinite prime numbers of the form 4k+3.