x = 3 is a vertical line that goes straight up and down at 3 on the x axis, vertical lines have a undefined slope. Don't confuse that with no slope which is a flat like like y=7.
so the slope is undefined
Answer:
Options (1), (2), (3) and (7)
Step-by-step explanation:
Given expression is
.
Now we will solve this expression with the help of law of exponents.
![\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}=\frac{\sqrt[3]{(2^3)^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B%282%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D)
![=\frac{\sqrt[3]{2\times 3} }{3\times2^{\frac{1}{9}}}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%5Ctimes%203%7D%20%7D%7B3%5Ctimes2%5E%7B%5Cfrac%7B1%7D%7B9%7D%7D%7D)




[Option 2]
[Option 1]
![2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2](https://tex.z-dn.net/?f=2%5E%7B%5Cfrac%7B2%7D%7B9%7D%7D%5Ctimes%203%5E%7B-%5Cfrac%7B2%7D%7B3%7D%20%7D%3D%28%5Csqrt%5B9%5D%7B2%7D%29%5E2%5Ctimes%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%29%5E2)

[Option 3]

[Option 7]
Therefore, Options (1), (2), (3) and (7) are the correct options.
Answer:1/3 i dont know if this is right i just kindly copied the guy on top
Step-by-step explanation:
Answer:
Quieres ser mi novia.. Hermosa.. MI estrella fugaz
Step-by-step explanation:
❤️❤️❤️❤️❤️❤️:-):-):-):-)amorsito...,,,,,,, - - - - ////
The two values of roots of the polynomial
are 
<u>Solution:</u>
Given, polynomial expression is 
We have to find the roots of the given expression.
In order to find roots, now let us use quadratic formula.

Given that
Here a = 1, b = -11 and c = 15
On substituting the values we get,


Hence, the roots of given polynomial are 