Answer:
The variance for the number of tasters is 4.2
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they are tasters, or they are not. The probability of a person being a taster is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The variance of the binomial distribution is:

It is known that 70% of the American people are "tasters" with the rest are "non-tasters". Suppose a genetics class of size 20
This means that 
So

The variance for the number of tasters is 4.2
<u><em>Answer:</em></u>
<u><em /></u>
<u><em>Explanation:</em></u>
<u>Before we begin, remember the following rules:</u>
<u>1- Distribution property:</u>
<u />
<u>2- Simplification of fractions:</u>
<u />
<u>3- Signs in multiplication:</u>
+ve * +ve = +ve
-ve * -ve = +ve
+ve * -ve = -ve
<u>Now, for the given problem, we have:</u>
<u></u>
<u>Starting with the distributive property:</u>
<u />
..................>This corresponds to option 1
<u>Now, we simplify the output from the above step:</u>
<u />
................> This corresponds to option 5
Hope this helps :)
Common Ratio<span>. For a </span>geometric sequence<span> or </span>geometric series<span>, the </span>common ratio<span> is the ratio of a term to the previous term. This ratio is usually indicated by the variable r.</span>
PLEASE HELP MEEEEEEEE IM BEGGING
Answer:
B. 9 Units squared
Step-by-step explanation:
Edge 2021