Answer:
1) is not possible
2) P(A∪B) = 0.7
3) 1- P(A∪B) =0.3
4) a) C=A∩B' and P(C)= 0.3
b) P(D)= 0.4
Step-by-step explanation:
1) since the intersection of 2 events cannot be bigger than the smaller event then is not possible that P(A∩B)=0.5 since P(B)=0.4 . Thus the maximum possible value of P(A∩B) is 0.4
2) denoting A= getting Visa card , B= getting MasterCard the probability of getting one of the types of cards is given by
P(A∪B)= P(A)+P(B) - P(A∩B) = 0.6+0.4-0.3 = 0.7
P(A∪B) = 0.7
3) the probability that a student has neither type of card is 1- P(A∪B) = 1-0.7 = 0.3
4) the event C that the selected student has a visa card but not a MasterCard is given by C=A∩B' , where B' is the complement of B. Then
P(C)= P(A∩B') = P(A) - P(A∩B) = 0.6 - 0.3 = 0.3
the probability for the event D=a student has exactly one of the cards is
P(D)= P(A∩B') + P(A'∩B) = P(A∪B) - P(A∩B) = 0.7 - 0.3 = 0.4
Answer:
49 children
Step-by-step explanation:
Adult : Child = 2 : 7
Adult = 14
2 = 14
So, 1 = 14/2 = 1 = 7 in the ratio.
So, 7 x 7 = 49 children are there.
47 -14i
You can work this out in the straight-forward way, or you can recognize that (6-i) is a common factor. In the latter case, you have ...
... = (6-i)(5 + 3-i)
... = (6 -i)(8 -i)
This product of binomials is found in the usual way. Each term of one factor is multiplied by each term of the other factor and the results summed. Of course, i = √-1, so i² = -1.
... = 6·8 -6i -8i +i²
... = 48 -14i -1
... =
_____
A suitable graphing calculator will work these complex number problems easily.
I think it’s A I’m sorry if I am wrong so I am pretty sure it’s A