The sum if the geometric sequence given by:
an=-2(3)^(n-1)
will be:
when:
n=1
an=-2
when n=2
a2=-6
when n=3
a3=-18
when n=4
a4=-54
when n=5
a5=-162
when n=6
a6=-486
when n=7
a7=-1458
when n=8
a8=-4374
thus the summation of the term will be:
Sn=(-4374+-1458+-486+-162+-54+-18+-6+-2)
Sn=-6560
the answer is -6560
Answer:
the slope is 4/3
Step-by-step explanation:
so the equation of your problem would be y=4/3x-2
-2 is your y-intercept (or your b)
pls vote brainliest tyyy <3
Answer:
C (y=5x-7)
Step-by-step explanation:
First, you find the slope between the 2 points which is 5, then you use one of the points to form an equation.
You then find it's y=5x-7.
well, let's first notice, all our dimensions or measures must be using the same unit, so could convert the height to liters or the liters to centimeters, well hmm let's convert the volume of 1000 litres to cubic centimeters, keeping in mind that there are 1000 cm³ in 1 litre.
well, 1000 * 1000 = 1,000,000 cm³, so that's 1000 litres.
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=1000000~cm^3\\ h=224~cm \end{cases}\implies \stackrel{cm^3}{1000000}=\pi r^2(\stackrel{cm}{224}) \\\\\\ \cfrac{1000000}{224\pi }=r^2\implies \sqrt{\cfrac{1000000}{224\pi }}=r\implies \cfrac{1000}{\sqrt{224\pi }}=r\implies \stackrel{cm}{37.7}\approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D1000000~cm%5E3%5C%5C%20h%3D224~cm%20%5Cend%7Bcases%7D%5Cimplies%20%5Cstackrel%7Bcm%5E3%7D%7B1000000%7D%3D%5Cpi%20r%5E2%28%5Cstackrel%7Bcm%7D%7B224%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%3Dr%5E2%5Cimplies%20%5Csqrt%7B%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Ccfrac%7B1000%7D%7B%5Csqrt%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B37.7%7D%5Capprox%20r)
now, we could have included the "cm³ and cm" units for the volume as well as the height in the calculations, and their simplication will have been just the "cm" anyway.