Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
mol = mass ÷ molar mass
If mass of hydrazine (N₂H₄) = 5.29 g
then mol of hydrazine = 5.29 g ÷ ((14 ×2) + (1 × 4))
= 0.165 mol
mole ratio of hydrazine to Nitogen is 1 : 1
∴ if moles of hydrazine = 0.165 mol
then moles of nitrogen = 0.165 mol
Mass = mol × molar mass
Since mol of nitrogen (N₂) = 0.165
then mass of hydrazine = 0.165 × (14 × 2)
= 4.62 g
the answer i believe is electrolytes.
This problem is providing the chemical reaction whereby barium nitride reacts with water to produce barium hydroxide and ammonia, so the number of moles of barium nitride are required in order to produce 8.3 moles of ammonia. It asks for us to evaluate the student's setup, so we conclude the answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3", according to:
<h3>Mole ratios:</h3>
In chemistry, stoichiometric calculations are used to figure out the moles or mass of a substance, given information about another one in the reaction. In this case, for the given chemical equation:

We evidence a 1:2 mole ratio of barium nitride to ammonia, for that reason, the student's setup:

Is incorrect, because the ammonia must be accompanied by a 2 rather than the 1 it is given there:

Thereby, the correct answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3"
Learn more about mole ratios: brainly.com/question/15288923
Answer:
The correct answer is They provide the molar ratio of reactant and products in a chemical reaction.
Explanation:
Balanced chemical equation helps us to calculate the number of moles of both reactant and product.For example
2H2+O2=2H2O
From the above balanced equation it can be stated that 2 molecules of hydrogen(H2) reacts with 1 molecule of oxygen(O2) to form 2 molecules of water.