Answer:
Explanation:
To determine the molecular formula of the compound, the empirical formula must be determined first. To determine the empirical formula, the percentage of each constituent is divided by its molar mass. This is shown below
Carbon = 60/12 = 5
Oxygen = 32/16 = 2
Hydrogen = 8/1 = 8
The next step is to divide each ratio by the smallest value. The smallest value is 2. It becomes
Carbon = 5/2 = 2.5
It is approximated to 3
Oxygen = 2/2 = 1
Hydrogen = 8/2 = 4
Therefore, the empirical formula is
C3H4O
From the given relative molecular mass of the compound, the molecular formula can be determined
Answer:

Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:

Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:

Best regards!
1. Deeply embedded pearls.
2. All of the above
3. Fluid trapped in sedimentary
4. All of the above
Answer:
The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.
Explanation:
hope it helps.
have a wonderful day!
Answer:
1.rate of reaction should be indicated by symbols 2.we should indicate physical states by sybloms 3.reversible reaction should be indicated by using double arrows