1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
9

1. Kyle is using elimination to solve the system

Mathematics
1 answer:
Andrei [34K]3 years ago
7 0
I think it’s D but I am not sure
You might be interested in
The volume of a cylinder is 252π252π cm3 and its height is 7 cm.
kirill [66]
V = (pi) * r^2 * h
h = 7
V = 252(pi)

252(pi) = r^2 * 7
252(pi) / 7 = r^2
36(pi) = r^2
sqrt 36(pi) = r
6 = r <==== radius is 6 cm
8 0
3 years ago
HELP I NEED HELP ASAP
eimsori [14]

Answer:

I think its D

Step-by-step explanation:

You can rule out A and B because he would be able to throw it farther than 30 ft do that leaves C and D but davis Couldn't throw a 9.1 lb ball 30 ft so the answer is D

3 0
3 years ago
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
What is this equation simplified<br><img src="https://tex.z-dn.net/?f=%20%28%7Bx%7D%5E%7B3%7D%292" id="TexFormula1" title=" ({x}
SVEN [57.7K]

Answer:

2x³

Step-by-step explanation:

2x³

5 0
3 years ago
PLEASE HELP!! Points A, B, and P are collinear on segment AB, and AP: AB = 1/4. A is located at (8,4) and B is located at (4,12)
artcher [175]

Answer:

(7,6)

Step-by-step explanation:

plz mark as brainliest if it helps

3 0
3 years ago
Other questions:
  • Solve the quadratic equation by completing the square.
    12·2 answers
  • An hourly salary of $45 is equivalent to what annual salary? Assume a 35-hour work week. ​
    12·2 answers
  • Convert the measurement as indicated.<br> 73 inches = ? ft  ?in
    11·2 answers
  • Jose weighs 180 pounds and plans on gaining 2 pounds per week. Marty weighs 249 pounds and plans on losing 1 pound per week. In
    15·1 answer
  • Write the point-slope form of an equation of the line through the points (6,-1) and (5,7)
    5·1 answer
  • The sum of three numbers is 103. The second number is 5 less than the first. The third number is 4 times the first. What are the
    14·1 answer
  • 2) Find the unknown sizes.
    11·2 answers
  • X+2<br> 3<br> ​ <br> + <br> x+1<br> 7<br> ​ <br> = <br> x <br> 2<br> +3x+2<br> 3<br> ​
    8·1 answer
  • A team wishes to purchase 10 shirts of the same color. A store sells shirts in 3 different colors. What must the inventory of th
    11·1 answer
  • (10 + 59 – 3​ 2​) ÷( 24 – 4 )
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!