Assuming the number cube has six sides, there are only two numbers less than three so 2/6ths or (simplied) 1/3.
Easy
nPr=

here
36P19=



1045843337171591729971200000
A)0.9, b) 0.6, c) 0.75, d)0.25
so the points are, from P1 to P2, namely P1P2, and from P2 to P3, namely P2P3, and from P3 back to P1, namely P3P1.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P1(\stackrel{x_1}{5}~,~\stackrel{y_1}{-4})\qquad P2(\stackrel{x_2}{8}~,~\stackrel{y_2}{-3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ P1P2=\sqrt{[8-5]^2+[-3-(-4)]^2}\implies P1P2=\sqrt{(8-5)^2+(-3+4)^2} \\\\\\ P1P2=\sqrt{3^2+1^2}\implies \boxed{P1P2=\sqrt{10}}\\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P1%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-4%7D%29%5Cqquad%20%20P2%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%5Cqquad%20%5Cqquad%20%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P1P2%3D%5Csqrt%7B%5B8-5%5D%5E2%2B%5B-3-%28-4%29%5D%5E2%7D%5Cimplies%20P1P2%3D%5Csqrt%7B%288-5%29%5E2%2B%28-3%2B4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P1P2%3D%5Csqrt%7B3%5E2%2B1%5E2%7D%5Cimplies%20%5Cboxed%7BP1P2%3D%5Csqrt%7B10%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P2(\stackrel{x_2}{8}~,~\stackrel{y_2}{-3})\qquad P3(\stackrel{x_2}{7}~,~\stackrel{y_2}{-10}) \\\\\\ P2P3=\sqrt{[7-8]^2+[-10-(-3)]^2}\implies P2P3=\sqrt{(7-8)^2+(-10+3)^2} \\\\\\ P2P3=\sqrt{(-1)^2+(-7)^2}\implies P2P3=\sqrt{50}\implies \boxed{P2P3=5\sqrt{2}}\\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P2%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%5Cqquad%20%20P3%28%5Cstackrel%7Bx_2%7D%7B7%7D~%2C~%5Cstackrel%7By_2%7D%7B-10%7D%29%20%5C%5C%5C%5C%5C%5C%20P2P3%3D%5Csqrt%7B%5B7-8%5D%5E2%2B%5B-10-%28-3%29%5D%5E2%7D%5Cimplies%20P2P3%3D%5Csqrt%7B%287-8%29%5E2%2B%28-10%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P2P3%3D%5Csqrt%7B%28-1%29%5E2%2B%28-7%29%5E2%7D%5Cimplies%20P2P3%3D%5Csqrt%7B50%7D%5Cimplies%20%5Cboxed%7BP2P3%3D5%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P3(\stackrel{x_2}{7}~,~\stackrel{y_2}{-10})\qquad P1(\stackrel{x_1}{5}~,~\stackrel{y_1}{-4}) \\\\\\ P3P1=\sqrt{[5-7]^2+[-4-(-10)]^2}\implies P3P1=\sqrt{(5-7)^2+(-4+10)^2} \\\\\\ P3P1=\sqrt{(-2)^2+6^2}\implies P3P1=\sqrt{40}\implies \boxed{P3P1=2\sqrt{10}}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P3%28%5Cstackrel%7Bx_2%7D%7B7%7D~%2C~%5Cstackrel%7By_2%7D%7B-10%7D%29%5Cqquad%20%20P1%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-4%7D%29%20%5C%5C%5C%5C%5C%5C%20P3P1%3D%5Csqrt%7B%5B5-7%5D%5E2%2B%5B-4-%28-10%29%5D%5E2%7D%5Cimplies%20P3P1%3D%5Csqrt%7B%285-7%29%5E2%2B%28-4%2B10%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P3P1%3D%5Csqrt%7B%28-2%29%5E2%2B6%5E2%7D%5Cimplies%20P3P1%3D%5Csqrt%7B40%7D%5Cimplies%20%5Cboxed%7BP3P1%3D2%5Csqrt%7B10%7D%7D%20)
Answer:
3/11 for two red balls
2/11 for two green balls
Step-by-step explanation:
6 red and 5 green balls
- first ball - red= 6/11, green= 5/11
- second red ball- 5/10=1/2, second green ball- 4/10= 2/5
- Two red balls = 6/11*1/2= 3/11
- Two green balls= 5/11*2/5= 2/11