The equation given in the question has two unknown variables in the form of "x" and "y". The exact value of "x" and "y" cannot be determined as two equations are needed to get to the exact values of "x" and "y". This equation can definitely be used to show the way for determining the values of "x" in terms of "y"and the value of "y" in terms of "x". Now let us check the equation given.
2x - 5y = - 15
2x = 5y - 15
2x = 5(y - 3)
x = [5(y - 3)]/2
Similarly the way the value of y can be determined in terms of "x" can also be shown.
2x - 5y = - 15
-5y = - 2x - 15
-5y = -(2x + 15)
5y = 2x + 15
y = (2x +15)/5
= (2x/5) + (15/5)
= (2x/5) + 3
So the final value of x is [5(y -3)]/2 and the value of y is (2x/5) + 3.
Part 1: The general form for this matches y^2 = -4cx, which implies that this opens to the left. (Imagine assigning any value of y, whether positive or negative, which would result in a positive left-hand value. Then to match this sign, the value of x must be negative so that the right-hand side becomes positive as well.)
Part 2: The distance from the vertex to the directrix is given by c. This equation has its vertex at the origin (0, 0). If it opens to the left, the directrix is a vertical line to the right of the origin. This equation is y^2 = -4(1/2)x, so c = 1/2, and the directrix has the equation x = 1/2.
Part 3: The focus is inside the parabola, but it is the same distance from the vertex as the directrix. This distance is 1/2 units, and it will be to the left of the vertex. So the focus is at (-1/2, 0).
Using the equation P=a+b+c , you just need to plug in.
4a-2b + 7a-3 + 9a - 4
Combine like terms.
20a-2b-7
A = (1/2)(b * h)
It is 1/2 times the product (which is the end result of multiplication of two values), of base (b) times height (h)
4) the distance between the x-values is 3 and the distance between the y-values is 4
3² + 4² = d²
9 + 16 = d²
25 = d²
√25 = d
5 = d
Answer: C
6)
d = 
d = 
d = 
d = 
d = 
d = 
d = 6.1
Answer: A