Answer: A trapezoid is always a parallelogram.
Step-by-step explanation:
The question is somewhat poorly posed because the equation doesn't involve <em>θ</em> at all. I assume the author meant to use <em>x</em>.
sec(<em>x</em>) = csc(<em>x</em>)
By definition of secant and cosecant,
1/cos(<em>x</em>) = 1/sin(<em>x</em>)
Multiply both sides by sin(<em>x</em>) :
sin(<em>x</em>)/cos(<em>x</em>) = sin(<em>x</em>)/sin(<em>x</em>)
As long as sin(<em>x</em>) ≠ 0, this reduces to
sin(<em>x</em>)/cos(<em>x</em>) = 1
By definition of tangent,
tan(<em>x</em>) = 1
Solve for <em>x</em> :
<em>x</em> = arctan(1) + <em>nπ</em>
<em>x</em> = <em>π</em>/4 + <em>nπ</em>
(where <em>n</em> is any integer)
In the interval 0 ≤ <em>x</em> ≤ 2<em>π</em>, you get 2 solutions when <em>n</em> = 0 and <em>n</em> = 1 of
<em>x</em> = <em>π</em>/4 <u>or</u> <em>x</em> = 5<em>π</em>/4
If you would like to solve 1/4 * 4/7, you can do this using the following steps:
<span>1/4 * 4/7 = (1 * 4) / (4 * 7) = 4/28 = 1/7
</span>
The correct result would be 1/7.