Answer:
18.25
Step-by-step explanation:
Answer:
(a) B. G(x) is an antiderivative of f(x) because G'(x) = f(x) for all x.
(b) Every function of the form
is an antiderivative of 8x
Step-by-step explanation:
A function <em>F </em>is an antiderivative of the function <em>f</em> if

for all x in the domain of <em>f.</em>
(a) If
, then
is an antiderivative of <em>f </em>because

Therefore, G(x) is an antiderivative of f(x) because G'(x) = f(x) for all x.
Let F be an antiderivative of f. Then, for each constant C, the function F(x) + C is also an antiderivative of <em>f</em>.
(b) Because

then
is an antiderivative of
. Therefore, every antiderivative of 8x is of the form
for some constant C, and every function of the form
is an antiderivative of 8x.
40 is the answer for your question
Answer:
B
Step-by-step explanation: