Answer:Consider the right triangle formed by the complex number in the Argand-Gauss plane and it's projections on the axis. – José Siqueira Nov 12 '13 at 17:21
In particular what is the definition of sine of theta in terms of the known sides of the above mentioned right triangle? – Adam Nov 12 '13 at 17:27
Add a comment
3 Answers
1
Consider the following Argand-diagram
enter image description here
The y-axis is the imaginary axis and the x-axis is the real one. The complex number in question is
x+yi
To figure out θ, consider the right-triangle formed by the two-coordinates on the plane (illustrated in red). Let θ be the angle formed with the real axis.
tanθ=yx
⟹tan−1(yx)
The hypotenuse of the triangle will be
x2+y2−−−−−−√
Therefore,
Step-by-step explanation:
Answer:
(−1.5,1)
Step-by-step explanation:
Finding the distance, midpoint, slope, equation and the x y-intercepts of a line passing between the two points p1 (6,7) and p2 (-9,-5)
The distance (d) between two points (x1,y1) and (x2,y2) is given by the formula
d = √ ((X2-X1)2+(Y2-Y1)2)
d = √ (-9-6)2+(-5-7)2
d = √ ((-15)2+(-12)2)
d = √ (225+144)
d = √ 369
The distance between the points is 19.2093727122985
The midpoint of two points is given by the formula
Midpoint= ((X1+X2)/2,(Y1+Y2)/2)
Find the x value of the midpoint
Xm=(X1+X2)/2
Xm=(6+-9)/2=-1.5
Find the Y value of the midpoint
Ym=(Y1+Y2)/2
Ym=(7+-5)/2=1
The midpoint is: (-1.5,1)
Answer:
y = (3/2)x + 8
Step-by-step explanation:
Make it into y = form so...
3x - 2y = -16
-2y = -3x - 16 (subtract 3x from both sides)
y =
x + 8 (divide both sides by -2)
Perfect squares can be divided and multiplied by the same number to get the same number. For example 25/5=5. 5*5=25.
4/2=2, 2*2=4
1/1=1, 1*1=1
9/3=3, 3*3=9
16/4=4, 4*4=16.
Hence the perfect squares.