Given the data, the correct statement is
Even though for a majority of the race they accelerated at the same rate, Beverly won because her initial acceleration was greater than Carl’s
<h3>What is acceleration? </h3>
This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
<h3>How to determine the initial acceleration of Beverly</h3>
- Initial velocity (u) = 0 m/s
- Final velocity (v) = 15 m/s
- Time (t) = 10 s
- Initial acceleration (a₁) =?
a₁ = (v – u) / t
a₁ = (15 – 0) / 10
a₁ = 1.5 m/s²
<h3>How to determine the final acceleration of Beverly</h3>
- Initial velocity (u) = 15 m/s
- Final velocity (v) = 35 m/s
- Time (t) = 50 - 10 = 40 s
- Final acceleration (a₂) =?
a₂ = (v – u) / t
a₂ = (35 – 15) / 40
a₂ = 0.5 m/s²
<h3>How to determine the initial acceleration of Carl</h3>
- Initial velocity (u) = 0 m/s
- Final velocity (v) = 10 m/s
- Time (t) = 10 s
- Initial acceleration (a₁) =?
a₁ = (v – u) / t
a₁ = (10 – 0) / 10
a₁ = 1 m/s²
<h3>How to determine the final acceleration of Carl</h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 30 m/s
- Time (t) = 50 - 10 = 40 s
- Final acceleration (a₂) =?
a₂ = (v – u) / t
a₂ = (30 – 10) / 40
a₂ = 0.5 m/s²
SUMMARY
- Initial acceleration of Beverly = 1.5 m/s²
- Final acceleration of Beverly = 0.5 m/s²
- Initial acceleration of Carl = 1 m/s²
- Final acceleration of Carl = 0.5 m/s²
From the above calculations, we can see that Beverly's initial acceleration is higher than that of Carl's and their final acceleration is the same.
Therefore, the correct answer to the question is:
Even though for a majority of the race they accelerated at the same rate, Beverly won because her initial acceleration was greater than Carl’s
Complete question
See attached photo
Learn more about acceleration:
brainly.com/question/491732
#SPJ1
Answer:
Mass: 981.0 g
Density: 5.61 g/cm^3
Hardness: = 2.5 - 3
Unknown material: Chalcocite
Explanation:
<u>Answer:</u> The boiling point of solution is 101.56°C
<u>Explanation:</u>
Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.
The equation used to calculate elevation in boiling point follows:

To calculate the elevation in boiling point, we use the equation:

Or,

where,
Boiling point of pure water = 100°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 0.52°C/m.g
= Given mass of solute (urea) = 27.0 g
= Molar mass of solute (urea) = 60 g/mol
= Mass of solvent (water) = 150.0 g
Putting values in above equation, we get:

Hence, the boiling point of solution is 101.56°C
Answer:
3.937 x 10⁻⁸ inches
Explanation:
Data Given:
Atomic radium in pm (picometer) = 1.00 x 10² pm
Atomic radium in inches = ?
1 pm = 10⁻¹² m
Solution:
First convert picometer to meter
As we Know
1 pm = 10⁻¹² m
then
1.00 x 10² pm = X meter
Do cross multiplication
X meter = (1.00 x 10² pm)(10⁻¹² m) / 1 pm
X meter = 1 x 10⁻⁹ m
So, 1.00 x 10² pm equal to 1 x 10⁻⁹ m
Now convert meter to inches
As
1 m = 39.37 inches
1 x 10⁻⁹ m = X inches
Do cross multiplication
X inches = (39.3701 inches)(1 x 10⁻⁹ m ) / 1 m
X inches = 3.937 x 10⁻⁸ inches
So,
1.00 x 10² pm = 3.937 x 10⁻⁸ inches
so the radius is 3.937 x 10⁻⁸ inches
Answer:
D. The other planet has munch less mass than the earth so it exerts much less gravitational force