Nuclear energy comes from splitting of Barium atom to form Krypton atom
<span>0.74 Kcal/min x 1000 cal/60 s
</span>
The Intermolecular force is a type of force which exists between particles in an Ideal gas.
<h3>What type of force which exists between particles in an Ideal gas?</h3>
Intermolecular forces are considered weaker attractions that hold molecules in gas close together. This force of attraction is present between molecules or particles.
So we can conclude that the Intermolecular force is a type of force which exists between particles in an Ideal gas.
Learn more about attraction here: brainly.com/question/1308963
#SPJ1
360 seconds?
i’m guessing that is the answer as the question is unreasonable
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.