The answer for the problem is explained below.
The option for the answer is "D".
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Explanation:
Given:
wavelength (λ) = 468 nm = 468×10^-9 m
speed of light (c) = 3.00 x 10^8m/s
Planck's constant is 6.626 x 10^-34J·s
To solve:
energy of light (E)
We know,
E =(h×c) ÷ λ
E = ( 6.626 x 10^-34 × 3.00 x 10^8) ÷ 468×10^-9
E = 4.25 × 10^-19 J
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Oxygen has six valence (outer-shell) electrons so therefore gains two more electrons to form the O-2 ion Its electron configuration is: 1s2 2s2 2p6 or Ne
If this helped mark Brainliest!
Explanation:
Bernoulli equation for the flow between bottom of the tank and pipe exit point is as follows.
= 
![\frac{(100 \times 144)}{62.43} + 0 + h[tex] = [tex]\frac{(50 \times 144)}{(62.43)} + \frac{(70)^{2}}{2(32.2)} + 0 + 40 + 60](https://tex.z-dn.net/?f=%5Cfrac%7B%28100%20%5Ctimes%20144%29%7D%7B62.43%7D%20%2B%200%20%2B%20h%5Btex%5D%20%3D%20%5Btex%5D%5Cfrac%7B%2850%20%5Ctimes%20144%29%7D%7B%2862.43%29%7D%20%2B%20%5Cfrac%7B%2870%29%5E%7B2%7D%7D%7B2%2832.2%29%7D%20%2B%200%20%2B%2040%20%2B%2060)
h = 
= 60.76 ft
Hence, formula to calculate theoretical power produced by the turbine is as follows.
P = mgh
= 
= 6076 lb.ft/s
= 11.047 hp
Efficiency of the turbine will be as follows.
=
× 100%
=
= 52.684%
Thus, we can conclude that the efficiency of the turbine is 52.684%.
Answer:
21.02moles of KBr
Explanation:
Parameters given:
Number of moles BaBr₂ = 10.51moles
Complete reaction equation:
BaBr₂ + K₂SO₄ → KBr + BaSO₄
Upon inspecting the given equation, we find out that the atoms are not balanced on both sides of the equation:
The balanced equation is:
BaBr₂ + K₂SO₄ → 2KBr + BaSO₄
From the equation:
1 mole of BaBr₂ produces 2 moles of KBr
∴ 10.51 moles of BaBr₂ will yield (2 x 10.51) moles = 21.02moles of KBr
False, as oceans can act as carbon sinks along with forests.