The answer is schizophrenia!
The bond between the N and 0 (double bond) transfers and gives a -ve charge on O and a +ve charge on N atom at the group . Thus the +vely charged nitrogen is electron-deficient pulling electrons towards itself!
The combination of the +vely charged nitrogen and the electronegative oxygen atom leads to delocalization causing the resonance effect.
Answer:
Specififc rotation [∝] = 0.5° mL/g.dm
Explanation:
Given that:
mass = 400 mg
volume = 10 mL
For a solution,
The Concentration = mass/volume
Concentration = 400/10
Concentration = 40 g/mL
The path length l = 20 cm = 2 dm
Observed rotation [∝] = + 40°
Specififc rotation [∝] = ∝/l × c
where;
l = path length
c = concentration
Specififc rotation [∝] = (40 / 2 × 40)
Specififc rotation [∝] = 0.5° mL/g.dm
Answer:
1.28 atm
Explanation:
To solve this problem, you need to use the gas laws, more specifically the Combined Gas Law. It is P1V1/T1 = P2V2/T2. Simply plug your values in. But be careful! Make sure you convert your 20 degree C and 28 deg C to Kelvin, as that it the only temperature scale the Gas Laws work with. Upon plugging in your values, you get approximately 1.28 atm.
The two atoms shown in the equation are CALCIUM and oxygen.
<span>You start off with a neutral calcium atom with a shell of two electrons, a shell of 8 around that, a shell of 8 around that, and a shell containing 2...with no charge. </span>
<span>20 protons + 20 electrons. </span>
<span>You also have an oxygen atom with a shell of 2, and a shell of 6...with no charge. </span>
<span>8 protons + 8 electrons. </span>
<span>Each ionizes to form a calcium ion with 2 electrons removed (from the outer shell), leaving a +2 charge (20 protons, 18 electrons)... </span>
<span>and an oxygen ion with 2 electrons added (to the outer shell), leaving a -2 charge (8 protons, 10 electrons). </span>
<span>Their electrostatic attraction causes them to come together to form an ionic compound of CaO in a crystal lattice.</span>