Answer:
7.46 g.
Explanation:
- Firstly, we need to calculate the amount of heat needed to warm 5.64 kg of water from 21.0°C to 70.0°C using the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by water (Q = ??? J).
m is the mass of water <u><em>(m: we will determine).</em></u>
c is the specific heat capacity of water (c = 4.186 J/g.°C).
ΔT is the temperature difference (final T - initial T) (ΔT = 70.0 °C - 21.0 °C = 49.0 °C).
- To determine the mass of 1.76 L of water we can use the relation:
mass = density x volume.
density of water = 1000 g/L & V = 1.76 L.
∴ mass = density x volume = (1000 g/L)(1.76 L) = 1760.0 g.
∵ Q = m.c.ΔT
<em>∴ Q = m.c.ΔT </em>= (1760.0 g)(4.186 J/g.°C)(49.0 °C) = 360483.2 J ≅ 360.4832 kJ.
- As mentioned in the problem the molar heat of combustion of hexane is - 4163.0 kJ/mol.
<em>Using cross multiplication we can get the no. of moles of hexane that are needed to be burned to release 360.4832 kJ:</em>
Combustion of 1.0 mole of methane releases → - 4163.0 kJ.
Combustion of ??? mole of methane releases → - 360.4832 kJ.
∴ The no. of moles of hexane that are needed to be burned to release 360.4832 kJ = (- 360.4832 kJ)(1.0 mol)/(- 4163.0 kJ) = 0.0866 mol.
- Now, we can get the mass of hexane that must be burned to warm 1.76 L of water from 21.0°C to 70.0°C:
<em>∴ mass = (no. of moles needed)(molar mass of hexane)</em> = (0.0866 mol)(86.18 g/mol) = <em>7.46 g.</em>
Ammonium chloride is a white solid that breaks down when heated and produces ammonia and hydrogen chloride.
<h3>What is the reversible reaction?</h3>
A reversible reaction is a reaction in which the conversion of reactants to products and products to reactants occur at the same time. In the above example, the chemical shows a reversible reaction because it moves both forward and backward direction. In reversible reaction, equal amount of reactant is converted into product and product into reactant.
So we can conclude that Ammonium chloride is a chemical that represents a reversible reaction.
Learn more about reaction here: brainly.com/question/11231920
#SPJ1
Answer:
Mass of carbon = 236.5 g
Explanation:
Given data:
Mass of C₃H₆ = 275 g
Mass of C = ?
Solution:
Formula:
Mass of carbon = molar mass of carbon/ molar mass of compound × mass of compound
Molar mass of carbon = 12 g/mol
Molar mass of compound = 42 g/mol
Mass of carbon = 36 g/mol / 42 g/mol × 275 g
Mass of carbon = 0.86 × 275 g
Mass of carbon = 236.5 g
Car D
Because it is the heaviest. Kinetic energy is directly proportional to the velocity and mass of the object. All the cars have the same velocity. But Car D has the most mass. So, it has most kinetic energy, because more the mass more the energy.