2,3,7,10,13 i did this yesterday can u mark me brainliest
Answer: Option (d) is the correct answer.
Explanation:
When a hydrogen atom comes in contact with an electronegative atom then it results in the formation of a chemical bond.
More is the electronegativity of combining atom, more stronger will be the bond with hydrogen atom. As a result, the compound formed will not easily give up hydrogen atom upon dissociation.
Whereas less is the electronegativity of atom combining with hydrogen atom, easily it will donate the hydrogen atom upon dissociation.
Since, out of the given option sulfur (S) atom has low electronegativity as compared to oxygen and nitrogen atom.
Hence,
will easily donate hydrogen atom.
Thus, we can conclude that
molecule would be the best hydrogen bond donor.
C. rate = k[C4H9Br]
The slow step is always the rate-determining step. In the slow step, C4H9Br is the only reactant and has a coefficient of 1, so it is first order in the rate law.
Answer:
1-b
2-weaker(option is incorrect)
3-a
Explanation:
1-b because iodine is more electronegative because of this negative on iodine will be more stable as negative charge on more electronegative element is more stable.
2-weaker as size of Te (Tellurium) is greater than S (sulphur) so bond length of H-Te is larger than H-S and therefore bond energy will be lesser and can easily give hydrogen in case of H-Te. as bond energy is inversly proportional to bond length.
3-a hydrogen has more negative electron affinity so hydrogen will have -1 charge and it will behave as a electron donar atom that is basic not acidic hence NaH is not acidic.
Answer: It is number a
a. Cold is removed from the container of water until the rock, the container, and the water all reach the same final temperature.