Answer:
The sequence is:
10, 30, 50, 70, 90.....................
Step-by-step explanation:
We have,
First term (a) = 10
Common difference (d) = ?
Sum of first 5 terms (
) = 250
or, ![\frac{n}{2} [{2a+(n-1)d}] = 250](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%5B%7B2a%2B%28n-1%29d%7D%5D%20%3D%20250)
or, ![\frac{5}{2} [2*10 + 4d]=250](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B2%7D%20%5B2%2A10%20%2B%204d%5D%3D250)
or, ![\frac{5}{2} * 4[5+d]=250](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B2%7D%20%2A%204%5B5%2Bd%5D%3D250)
or, 10(5 + d) =250
or, 5 + d = 25
∴ d = 20
Now,
2nd term = a + d = 10 + 20 = 30
3rd term = a + 2d = 10 + 2*20 = 10 + 40 = 50
4th term = a + 3d = 10 + 3*20 = 10 + 60 = 70
5th term = a + 4d = 10 + 4*20 = 10 + 80 = 90
Answer:
$13,795
Step-by-step explanation:
15500/x=100/11
(15500/x)*x=(100/11)*x - we multiply both sides of the equation by x
15500=9.0909090909091*x - we divide both sides of the equation by (9.0909090909091) to get x
15500/9.0909090909091=x
1705=x
x=1705
now we have:
11% of 15500=1705
The radius of the container is 2 centimeter
<h3><u>Solution:</u></h3>
Given that a container of candy is shaped like a cylinder
Given that volume = 125.6 cubic centimeters
Height of conatiner = 10 centimeter
To find: radius of the container
We can use volume of cylinder formula and obatin the radius value
<em><u>The volume of cylinder is given as:</u></em>

Where "r" is the radius of cylinder
"h" is the height of cylinder and
is constant has value 3.14
Substituting the values in formula, we get

Taking square root on both sides,

Thus the radius of the container is 2 centimeter
Answer:
B
Step-by-step explanation:
+ 6 = x ( subtract 6 from both sides )
= x - 6 ( square both sides )
x = (x - 6)² ← expand using FOIL
x = x² - 12x + 36 ( subtract x from both sides )
0 = x² - 13x + 36 , that is
x² - 13x + 36 = 0 ← in standard form
(x - 4)(x - 9) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 4 = 0 ⇒ x = 4
x - 9 = 0 ⇒ x = 9
As a check
Substitute these values into the equation and if both sides are equal then they are the solutions.
x = 4
left side =
+ 6 = 2 + 6 = 8
right side = x = 4
Since 8 ≠ 4 then x = 4 is an extraneous solution
x = 9
left side =
+ 6 = 3 + 6 = 9
right side = x = 9
Thus the solution is x = 9 → B