3p^4(4p^4 + 7p^3 + 4p + 1)
<span>=<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span><span><span><span>4<span>p^4</span></span>+<span>7<span>p^3</span></span></span>+<span>4p</span></span>+1</span>)</span></span></span><span>=<span><span><span><span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>4<span>p^4</span></span>)</span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>7<span>p^3</span></span>)</span></span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>4p</span>)</span></span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(1)</span></span></span></span><span>=<span><span><span><span>12<span>p^8</span></span>+<span>21<span>p^7</span></span></span>+<span>12<span>p^5</span></span></span>+<span>3<span>p^<span>4</span></span></span></span></span>
Thirty-six thousand, nine hundred eighty-five
We have:

Then we use trigonometric identities to change the negative sign of the trigonometric functions, so:

We clear f(x):

we simply what we can:

Thus, the correct answer is;
Answer:
Square each number: 1 , 2 , 3 , 4 , 5:
1² = 1 * 1 = 1
2² = 2 * 2 = 4
3² = 3 * 3 = 9
4² = 4 * 4 = 16
5² = 5 * 5 = 25
~