Answer:
Time of murder = 10:39 am
Step-by-step explanation:
Let the equation of exponential function representing the final temperature of the body after time 't' is,
f(t) = 
Here, a = Initial temperature
n = Constant for the change in temperature
t = Duration
At 11:30 am temperature of the body was 91.8°F.
91.8 =
--------(1)
Time to reach the body to the morgue = 12:30 pm
Duration to reach = 12:30 p.m. - 11:30 a.m.
= 1 hour
Therefore, equation will be,
84.4 = 
eⁿ = 
ln(eⁿ) = ln(0.9194)
n = -0.08403
From equation (1),
91.8 = 

![ln[(e)^{0.08403t}]=ln[\frac{98.6}{91.8}]](https://tex.z-dn.net/?f=ln%5B%28e%29%5E%7B0.08403t%7D%5D%3Dln%5B%5Cfrac%7B98.6%7D%7B91.8%7D%5D)
0.08403t = 0.07146
t = 0.85 hours
t ≈ 51 minutes
Therefore, murder was done 51 minutes before the detectives arrival.
Time of murder = 11:30 - 00:51
= 10:90 - 00:51
= 10:39 am
Answer:
P = 0.4812
Step-by-step explanation:
First, we need to use here two expressions and then do the calculations.
The first one is the conditional probability which is:
P(B|A) = P(A∩B)/P(A) (1)
The second expression to use has relation with the Bayes's theorem which is the following:
P(D|C) = P(C|D)*P(D) / P(C|D)*P(D) + P(C|d)*P(d) (2)
Now, the expression (2) is the one that we will use to calculate the probability of a selected random bicyclist who tests positive for steroids.
So, in this case, we will call C for positive and D that is using steroids and d is the opposite of d, which means do not use steroids.
Then, the probabilities are the following:
P(D) = 8% or 0.08
P(C|D) = 96% or 0.96
P(C|d) = 9% or 0.09
P(d) = 1 - 0.08 = 0.92
With these data, let's replace in expression 2
P(D|C) = 0.96 * 0.08 /0.96 * 0.08 + 0.09*0.92
P(D|C) = 0.0768 / 0.1596
P(D|C) = 0.4812 or 48.12%
Answer:
The width of the field is 3.535353535m
Step-by-step explanation:
350÷99=3.535353535
Proof: 99×3.535353535=350
Oye me puedes mandar una foto de tu problema para haci poder ayudarte