There are 19.5 g Na in 71.4 g NaHCO₃
Calculate the <em>molecular mass of NaHCO₃</em>.
1 Na = 1 × 22.99 u = 22.99 u
1 H = 1 × 1.008 u = 1.008 u
1 C = 1 × 12.01 u = 12.01 u
3 O = 3 × 16.00 u = <u>48.00 u
</u>
TOTAL = 84.008 u
So, there are 22.99 g of Na in 84.008 g NaHCO₃.
∴ Mass of Na = 71.4 g NaHCO₃ × (22.99 g Na/84.008 g NaHCO₃) = 19.5 g Na
The tubes 1, 5 and 6 is the answer to the question which test tubes were used to determine the optimal ph lipase activity. Lipase is an enzyme and optimum ph the maximum possible point on which enzyme become active.
Answer:
P₄ + 5O₂ → 2P₂O₅
Explanation:
Phosphorus burn in the presence of air and produced diphosphorus pentoxide.
Chemical equation:
P₄ + O₂ → P₂O₅
Balanced chemical equation:
P₄ + 5O₂ → 2P₂O₅
Equation is balanced because there are four phosphorus atoms ans ten oxygen atoms in both side of equation.
Coefficient with reactant and product:
P₄ 1
O₂ 5
P₂O₅ 2
Answer:
The same instrument must be used to measure the unknown solution as was used to measure the known (standard) solutions that were used to create the calibration curve.
The analyte in the unknown solution must be the same analyte (or type of analyte) that is present in the known (standard) solutions that were used to create the calibration curve.
Domain and range restrictions must be observed.
Explanation:
Calibration curves are tools necessary in understanding the instrumental response for any analyte.
A calibration curve is obtained by preparing a set of standard solutions with known concentrations of the analyte. The instrument response for each concentration is measured and plotted against the concentration of the standard solution. The linear portion of this plot may be used to determine the unknown concentration of a sample of the analyte.
The equation of the best-fit line is used to determine the concentration of the unknown sample.