Once upon a time there was a lovely
princess. But she had an enchantment
upon her of a fearful sort which could
only be broken by love's first kiss.
She was locked away in a castle guarded
by a terrible fire-breathing dragon.
Many brave knights had attempted to
free her from this dreadful prison,
but non prevailed. She waited in the
dragon's keep in the highest room of
the tallest tower for her true love
and true love's first kiss. (laughs)
Like that's ever gonna happen. What
a load of - (toilet flush)
Allstar - by Smashmouth begins to play. Shrek goes about his
day. While in a nearby town, the villagers get together to go
after the ogre.
Answer:
condensing water
Explanation:
Entropy refers to the level of disorderliness in a system. The entropy of liquids is greater than that of solids. The entropy of gases is greater than that of liquids.
A process of physical change involving a change of state from solid to liquid or liquid to gas is accompanied by increase in entropy.
However, a change of state involving a change from liquid to solid or gas to liquid is accompanied by decrease in entropy.
Hence, steam condensing to water leads to decrease and not increase in entropy of the system.
Answer:
c
Explanation: just a chemachal
1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359
Okay, to explain this you might have to grab a periodic table.
Do you have one? Good. Look at the most left side of the periodic table. The first group is the largest atoms in the periodic table. If you go to the right of the periodic table, the atoms get progressively smaller and smaller.
Why is this? Don't atoms get more electrons, and so become significantly bigger as they move to the right?
Although atoms do get more electrons as they go to the right, they also get more protons too. Protons pull on electrons and make atoms smaller. Because of this, going from left to right in a periodic table makes the atoms smaller and smaller, since more and more protons are added.
In this scenario, Aluminum is more to the right than Sodium, which means that it has more protons. Because of this, the protons in Aluminum pull more strongly on electrons than sodium, thus making aluminum smaller.
(Just a side note, going down in a periodic table makes the atoms bigger, since new shells are added every time)
Good luck! If you need any help, just ask :))
-T.B.