Answer:
6.31g/mol
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Mole (n) = mass (m)/molar mass (Mm)
* Mm = m/n
Also, density (p) = mass (m) ÷ volume (V)
PV = nRT
Since n = M/Mm
PV = M/Mm. RT
PV × Mm = m × RT
Divide both sides by V
P × Mm = m/V × RT
Since p = m/V
P × Mm = p × RT
Mm = p × RT/P
Mm = 0.249 × 0.0821 × 293/0.95
Mm = 5.989 ÷ 0.95
Mm = 6.31g/mol
Answer:
NaNO₃
Explanation:
A precipitate is a compound or a salt formed from a precipitation reaction and does not dissolve in water and therefore will exist in solid state.
From the choices given precipitation reaction will occur between;
- Fe(NO₃)₃(aq) + 3NaOH(aq) → Fe(OH)₃(s) + 3NaNO₃(aq)
- Cu(NO₃)₂(aq) + 2NaOH(aq) → Cu(OH)₂(s) + 2NaNO₃(aq)
- FeSO₄(aq) + 2NaOH(aq) → Fe(OH)₂(s) + Na₂SO₄(aq)
Fe(OH)₃, Cu(OH)₂, and Fe(OH)₂ are precipitates.
From the rules of solubility, hydroxides are insoluble except Ca(OH)₂ which is slightly soluble and hydroxides of ammonium and alkali metals.
Fireworks
An exothermic reaction is one where the products have lower energy than the reactants, so the reaction yields energy. The chemical compounds present in firework fuel release a lot of energy upon oxidation. Photosynthesis is endothermic, settling of silt is not a chemical reaction, it is a physical change. Finally, the bubble formation in soda is not exothermic; otherwise, the sodas would become very hot very fast.
Explanation:
HNO3(aq) is the compound produced by a neutralization
Answer:
i'd say the second choice.
Explanation:
the rise in temperature causes the particles to vibrate causing motion. they collide thus resulting to the weakening of the particles.
hope it is of use to you.