1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
15

Hi, could someone help me differentiate Q6 b with the use if ln​

Mathematics
1 answer:
Lady bird [3.3K]3 years ago
8 0

Answer:

\displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Dividing]:                                                                   \displaystyle log(\frac{a}{b}) = log(a) - log(b)
  • Logarithmic Property [Exponential]:                                                             \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation
  • Implicit Differentiation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{(2x - 3)^2}{(3x + 4)^3}

<u>Step 2: Rewrite</u>

  1. [Equality Property] ln both sides:                                                                 \displaystyle lny = ln \bigg[ \frac{(2x - 3)^2}{(3x + 4)^3} \bigg]
  2. Expand [Logarithmic Property - Dividing]:                                                   \displaystyle lny = ln(2x - 3)^2 - ln(3x + 4)^3
  3. Simplify [Logarithmic Property - Exponential]:                                             \displaystyle lny = 2ln(2x - 3) - 3ln(3x + 4)

<u>Step 3: Differentiate</u>

  1. Implicit Differentiation:                                                                                 \displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ 2ln(2x - 3) - 3ln(3x + 4) \bigg]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 2 \bigg( \frac{1}{2x - 3} \bigg)\frac{dy}{dx}[2x - 3] - 3 \bigg( \frac{1}{3x + 4} \bigg) \frac{dy}{dx}[3x + 4]
  3. Basic Power Rule:                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 4 \bigg( \frac{1}{2x - 3} \bigg) - 9 \bigg( \frac{1}{3x + 4} \bigg)
  4. Simplify:                                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{4}{2x - 3} - \frac{9}{3x + 4}
  5. Isolate  \displaystyle \frac{dy}{dx}:                                                                                                     \displaystyle \frac{dy}{dx} = y \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  6. Substitute in <em>y</em> [Derivative]:                                                                           \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  7. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg[ \frac{4(3x + 4) - 9(2x - 3)}{(2x - 3)(3x +4)} \bigg]
  8. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Arielle is building the wooden framework for the roof of a house. She needs the angle created by the vertical and horizontal boa
serg [7]
A² + b² = c²  ⇒ right triangle
a² + b² < c² ⇒ obtuse triangle
a² + b² > c² ⇒ acute triangle

a = 12 ft ; b = 15 ft ; c = 20 ft

12² + 15² = < > 20²
144 + 225 = < > 400
369 < 400 OBTUSE TRIANGLE

√369 = 19.21

20 - 19.21 = 0.79 

<span>It is an obtuse triangle. About 0.8 foot needs to be removed from the 20-foot board to create a right triangle.</span>


4 0
4 years ago
How do I subtract fractions? Please explain step by step to get marked!
Mashutka [201]

Answer:

Explained below :)

(I tried my best, sorry if it doesn't make sense.)

Step-by-step explanation:

Example: 1/4 - 1/8= ?

1: Find the common denominator (bottom number)

2: If the common denominator is 8 then you multiply 1/4 by 2/2 to get the denominator of 8. If you needed then you can multiply the other fraction to get the same denominator.

3: Once you get multiply that then you get 2/8 -1/8.

4: Subtract the numerator (top number) 1

5: Keep the numerator (8)

6: Your answer would be 1/8

7 0
2 years ago
Sarah and her family just got back from vacation they had been travelling for 3 days driving 8 1/2 hours each day how many hours
sergeinik [125]
3×8.5= 25.5 hours all together
6 0
3 years ago
When rounded to the hundreds place, which of the numbers below round to 23,400? Select all that apply.
nevsk [136]

Answer:

I think the answer is B 23,345

7 0
2 years ago
Determine whether the statements are True or False. Justify your answer with an explanation.
frez [133]

Problem 1

<h3>Answer: False</h3>

---------------------------------

Explanation:

The notation (f o g)(x) means f( g(x) ). Here g(x) is the inner function.

So,

f(x) = x+1

f( g(x) ) = g(x) + 1 .... replace every x with g(x)

f( g(x) ) = 6x+1 ... plug in g(x) = 6x

(f o g)(x) = 6x+1

Now let's flip things around

g(x) = 6x

g( f(x) ) = 6*( f(x) ) .... replace every x with f(x)

g( f(x) ) = 6(x+1) .... plug in f(x) = x+1

g( f(x) ) = 6x+6

(g o f)(x) = 6x+6

This shows that (f o g)(x) = (g o f)(x)  is a false equation for the given f(x) and g(x) functions.

===============================================

Problem 2

<h3>Answer: True</h3>

---------------------------------

Explanation:

Let's say that g(x) produced a number that wasn't in the domain of f(x). This would mean that f( g(x) ) would be undefined.

For example, let

f(x) = 1/(x+2)

g(x) = -2

The g(x) function will always produce the output -2 regardless of what the input x is. Feeding that -2 output into f(x) leads to 1/(x+2) = 1/(-2+2) = 1/0 which is undefined.

So it's important that the outputs of g(x) line up with the domain of f(x). Outputs of g(x) must be valid inputs of f(x).

7 0
3 years ago
Other questions:
  • Help ASAP!!!<br> Please and thank you
    15·1 answer
  • A polygon has vertices A(1,1), B(1, 4), C(4, 4). This figure is dilated by a factor of 3 and center of dilation (-1, 4). Find th
    11·1 answer
  • Luke paid 12.69 for 3 greeting cards. Each card cost the same amount, c. Which equation and solution represent this situation?
    9·2 answers
  • Can someone please help me with thiss!?
    15·1 answer
  • Is 63 / 168 equivalent to 312 / 832 ​
    12·2 answers
  • Please help with question 1, and 2. Thank you :)
    5·2 answers
  • Factor<br><br> -10x + 2<br><br> please answer!
    12·1 answer
  • How many minutes make a hour
    6·2 answers
  • Which proportion would you use to solve this problem 9 is 4% of what number
    15·1 answer
  • 1. Annie and her friends are playing a game called Doubles. In the game, a player
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!