Answer:
Step-by-step explanation:
hope this helps!
Answer:
14
Step-by-step explanation:
Answer:
- g(x) = 2|x|
- g(x) = -2|x|
- g(x) = -2|x| -3
- g(x) = -2|x-1| -3
Step-by-step explanation:
1) Vertical stretch is accomplished by multiplying the function value by the stretch factor. When |x| is stretched by a factor of 2, the stretched function is ...
g(x) = 2|x|
__
2) Reflection over the x-axis means each y-value is replaced by its opposite. This is accomplished by multiplying the function value by -1.
g(x) = -2|x|
__
3) As you know from when you plot a point on a graph, shifting it down 3 units subtracts 3 from the y-value.
g(x) = -2|x| -3
__
4) A right-shift by k units means the argument of the function is replaced by x-k. We want a right shift of 1 unit, so ...
g(x) = -2|x -1| -3
Answer:
Solution : (15, - 11)
Step-by-step explanation:
We want to solve this problem using a matrix, so it would be wise to apply Gaussian elimination. Doing so we can start by writing out the matrix of the coefficients, and the solutions ( - 5 and - 2 ) --- ( 1 )

Now let's begin by canceling the leading coefficient in each row, reaching row echelon form, as we desire --- ( 2 )
Row Echelon Form :

Step # 1 : Swap the first and second matrix rows,

Step # 2 : Cancel leading coefficient in row 2 through
,

Now we can continue canceling the leading coefficient in each row, and finally reach the following matrix.

As you can see our solution is x = 15, y = - 11 or (15, - 11).