1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
12

Consider the probability that greater than 26 out of 124 software users will call technical support. Assume the probability that

a given software user will call technical support is 97%. Specify whether the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
Mathematics
1 answer:
Mekhanik [1.2K]3 years ago
3 0

Answer:

Since n(1-p) = 3.72 < 10, the normal curve cannot be used as an approximation to the binomial probability.

100% probability that greater than 26 out of 124 software users will call technical support.

Step-by-step explanation:

Test if the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.

It is needed that:

np \geq 10 and n(1-p) \geq 10

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

E(X) = np

The standard deviation of the binomial distribution is:

\sqrt{V(X)} = \sqrt{np(1-p)}

Normal probability distribution

Problems of normally distributed distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that \mu = E(X), \sigma = \sqrt{V(X)}.

Out of 124 software users

This means that n = 124

Assume the probability that a given software user will call technical support is 97%.

This means that p = 0.97

Conditions:

np = 124*0.97 = 120.28 \geq 10

n(1-p) = 124*0.03 = 3.72 < 10

Since n(1-p) = 3.72 < 10, the normal curve cannot be used as an approximation to the binomial probability.

Consider the probability that greater than 26 out of 124 software users will call technical support.

The lowest possible probability of those is 27, so, if it is 0, since it is considerably below the mean, 100% probability of being greater. We have that:

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 27) = C_{124,27}.(0.97)^{27}.(0.03)^{97} = 0

1 - 0 = 1

100% probability that greater than 26 out of 124 software users will call technical support.

You might be interested in
How do you get the answer and sketch it to this graft
Katyanochek1 [597]
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
                       2(-4)
x = <u>-16 +/- √(256 - 224)</u>
                     -8
x = <u>-16 +/- √(32)
</u>               -8<u>
</u>x = <u>-16 +/- 5.66
</u>              -8<u>
</u>x = <u>-16 + 5.66</u>      x = <u>-16 - 5.66
</u>             -8                         -8<u>
</u>x = <u>-10.34</u>            x = <u>-21.66</u>      
          -8                         -8
x = 1.2925           x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u>                      <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
                 4
x = <u>8 +/- √(-8)</u>
             4
x = <u>8 +/- √(8 × (-1))</u>
                 4
x =<u> 8 +/- √(8)√(-1)</u>
                 4
x = <u>8 +/- 2.83i</u>
              4
x = 2 +/- 1.415i
x = 2 + 1.415i      x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
                      2(-2)
x = <u>-16 +/- √(256 - 192)</u>
                   -4
x = <u>-16 +/- √(64)</u>
               -4
x = <u>-16 +/- 8</u>
            -4
x = <u>-16 + 8</u>      x = <u>-16 - 8</u>
           -4                   -4
x = <u>-8</u>              x = <u>-24</u>
      -4                     -4
x = 2                x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
5 0
3 years ago
Erin randomly selected 15% of the Storytime Conference attendees and asked them about their highest completed level of education
ladessa [460]
B) 80
Have a great day!
5 0
3 years ago
File:///Users/haroldpagunsan/Desktop/Screen%20Shot%202018-01-26%20at%2012.48.02%20PM.png
Orlov [11]
You can not put this on here :)
5 0
3 years ago
Question below ------------------------------
Ludmilka [50]

Answer:

<h2>The first one is the answer</h2>

Step-by-step explanation:

Hope im correct can you brainliest me?

5 0
2 years ago
Evaluate b – 2a – c for a = –3, b = 9, and c = –6.
telo118 [61]
<span>b – 2a – c
= 9 - 2(-3) - (-6)
= 9 + 6 + 6
= 21

answer
21</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • I need help don’t know how to do
    10·2 answers
  • C-9.5÷1.9=-10 what does c equal
    5·1 answer
  • 9.84 x 0.26 SHOW WORK!!!!!!!!!!!!!!!
    10·2 answers
  • What are the solutions of the equation x^4-5x^2-36=0 use factoring to solve
    14·1 answer
  • Hi guys please help me to solve the following question
    6·1 answer
  • PLEASE HELP ME WITH THIS THANKS
    8·2 answers
  • What does the underlined conjunction connect in the sentence? The family enjoyed fishing, but they loved hiking during their tri
    12·1 answer
  • I’m really stupid. I need help
    6·2 answers
  • Without using a calculator, match each expression to the correct point.<br><br> Point<br> Expression
    9·1 answer
  • The sum of 2, 6, and a number amounts to 15. Find the number.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!